NASA Dust Detective Delivers First Maps From Space for Climate Science

EMIT’s data also will be freely available for a wide range of investigations, including, for example, the search for strategically important minerals such as lithium and rare-earth elements. What’s more, the instrument’s technology is laying the groundwork for the future Surface Biology and Geology (SBG) satellite mission, which is part of NASA’s Earth System Observatory, a set of missions aimed at addressing climate change.

Pioneering Technology

EMIT traces its roots to imaging spectrometer technology that NASA’s Airborne Imaging Spectrometer (AIS) first demonstrated in 1982. Designed to identify minerals on Earth’s surface from a low-altitude research aircraft, the instrument delivered surprising results almost immediately. During early test flights near Cuprite, Nevada, AIS detected the unique spectral signature of buddingtonite, a mineral not seen on any previous geological maps of the area.

Paving the way for future spectrometers when it was introduced in 1986, AVIRIS – the airborne instrument that succeeded AIS – has studied geology, plant function, and alpine snowmelt, among other natural phenomena. It has also mapped chemical pollution at Superfund sites and studied oil spills, including the massive Deepwater Horizon leak in 2010. And it flew over the World Trade Center site in Manhattan following the Sept. 11 attacks, locating uncontrolled fires and mapping debris composition in the wreckage.

Over the years, as optics, detector arrays, and computing capabilities have progressed, imaging spectrometers capable of resolving smaller targets and subtler differences have flown with missions across the solar system.

A JPL-built imaging spectrometer on the Indian Space Research Organization’s Chandrayaan-1 probe measured signs of water on the Moon in 2009. NASA’s Europa Clipper, which launches in 2024, will rely on an imaging spectrometer to help scientists assess if the icy Jovian moon has conditions that could support life.

Highly advanced JPL-developed spectrometers will be part of NASA’s forthcoming Lunar Trailblazer – which will determine the form, abundance, and distribution of water on the Moon and the nature of the lunar water cycle – and on satellites to be launched by the nonprofit Carbon Mapper, aimed at spotting greenhouse gas point-sources from space.

“The technology took directions that I would never have imagined,” said Gregg Vane, the JPL researcher whose graduate studies in geology helped inspire the idea for the original imaging spectrometer. “Now with EMIT, we’re using it to look back at our own planet from space for important climate research.”

More About the Mission

EMIT was selected from the Earth Venture Instrument-4 solicitation under the Earth Science Division of NASA Science Mission Directorate and was developed at NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech in Pasadena, California. It launched aboard a SpaceX Dragon resupply spacecraft from NASA’s Kennedy Space Center in Florida on July 14, 2022. The instrument’s data will be delivered to the NASA Land Processes Distributed Active Archive Center (DAAC) for use by other researchers and the public.

To learn more about the mission, visit:

https://earth.jpl.nasa.gov/emit/

Leave a Comment

Your email address will not be published. Required fields are marked *